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   ABSTRACT - The lifetime of electrical machines is closely 

related to the degradation of stator winding insulation. Non-

destructive diagnostic techniques, such as capacitance 

measurements and partial discharge (PD) analysis, are widely used 

to monitor this degradation. This study proposes a methodology to 

predict the remaining lifetime of electrical insulation systems 

based on measured indicators. Using artificial intelligence (AI) 

tools, four predictive models were developed to estimate insulation 

lifetime from the evolution of the Partial Discharge Inception 

Voltage (PDIV) over time. The best performance was achieved 

using an Artificial Neural Network (ANN), with an R² value of 

0.983. Additionally, this work enables the separate investigation of 

electrical and thermal aging processes. It also explores how the two 

indicators PDIV and parallel capacitance (Cp) provide an insight 

into different aging mechanisms. 

Keywords — Electrical insulation, AI, Aging, Indicator, 

Lifetime. 

1. INTRODUCTION  

Rotating electrical machines are particularly susceptible to 
insulation degradation, a gradual aging process that can span 
several years. This phenomenon, which affects the lifespan of 
equipment, represents a significant challenge for engineers and 
industrial maintenance managers. Two important studies 
highlight the extent of this phenomenon. The first, conducted by 
General Electric, analyzed 5000 three-phase squirrel-cage 
motors from various industrial sectors. It revealed that 37% of 
failures involved stators, 11% of which were specifically related 
to insulation systems [1]. The second study, conducted by 
CIGRE, shows that 56% of hydrogenerator failures are due to 
defects in insulation systems [2]. Finally, a complementary 
study on 1199 devices identifies three main causes of insulation 
system failure: insulation aging (responsible for 31% of 
problems), the occurrence of partial discharges (22%), and 
contamination or pollution (25%) [3]. 

The aging of insulation systems begins with the deterioration 
of the coil insulation, which then spreads to the insulation 
between phases or between phase and ground, leading to a 
progressive decrease in coil resistance [4]. This process is 
particularly concerning because it can lead to unforeseen 
mechanical and electrical failures. As insulating materials age, 
they become more sensitive to the various stresses they are 
subjected to. These factors are referred to as TEAM stresses 
(Thermal, Electrical, Ambient, and Mechanical). Thermal stress 
is due to the operating temperature, caused by Joule losses, eddy 

current losses, and hysteresis losses, and it is considered the 
dominant factor in long-term aging. Electrical stress has been 
addressed in several studies, especially in medium-voltage 
machines, where partial discharges occur as a result of the high 
voltage gradients (dv/dt) imposed by the inverter supply, and is 
further influenced by the the use of new power semiconductors 
devices based on SiC or GaN technology. Ambient stress refers 
to environmental factors such as humidity and radiation effects. 
Mechanical stress is caused by the movement of the coils and 
the magnetic forces generated by the current flow. All these 
stresses directly influence the lifespan of the stator and rotor 
winding insulation systems [5], progressively degrading the 
insulation integrity until its dielectric strength is compromised, 
eventually leading to insulation failure, which can be either 
permanent or temporary [6-8]. 

In this context, it is essential to better understand the underlying 
mechanisms of insulation aging and predict their behavior over 
time to extend the lifespan of machines and avoid costly failures. 
This work aims to use artificial intelligence to model these 
phenomena and predict the remaining life of insulations. The 
adopted approach relies on the collection of electrical data, such 
as parallel resistance (Rp), parallel capacitance (Cp), partial 
discharge inception voltage (PDIV), and dissipation factor (D) 
as aging indicators, as demonstrated in previous studies [9-11]. 
These measured data are then used to train selected artificial 
intelligence algorithms to estimate the condition of insulation 
systems. By leveraging experimental data from an aging 
indicator that reflects the state of the coil insulation, the 
predictive model estimates the remaining life of the insulation 
while accounting for the various factors influencing its 
degradation influencing its degradation.  

The remainder of this paper is organized as follows. Section 2 
reviews the literature on empirical and AI-based models for 
assessing the aging of electrical insulation systems. Section 3 
describes the experimental setup, including the twisted pair 
specimens and the accelerated aging procedure. Section 4 
presents the aging indicators measured during the experiments 
and their evolution over time. Section 5 details the development 
of aging prediction models using both linear regression and AI 
techniques. Finally, Section 6 summarizes the main findings and 
outlines directions for future research. 

2. LITERATURE REVIEW 



 

Studies have been conducted using in each case a single 
indicator to optimize time, and comparing the results with other 
conventional methods. [12-14]. 

2.1. Insulation Resistance for Lifetime Optimization 

Insulation resistance is one of the most commonly used 
parameters to assess the condition of insulation systems in 
electric motors. It typically decreases with increasing 
temperature, electrical stresses, and charge/discharge cycles. 
Studies [12][13] have shown that by monitoring insulation 
resistance, it is possible to predict the long-term lifespan under 
thermal aging at different temperatures. Several curve fitting 
models and Bayesian Regularization Backpropagation BRP 
neural network neural network have been employed. BRP relies 
on a feedforward architecture and adjusts weights and biases 
through iterative forward and backward passes to minimize 
prediction errors, while Bayesian regularization helps prevent 
overfitting and improves generalization. The results obtained 
from these models were used to generate Arrhenius plots, 
linking temperature to insulation lifespan. However, despite 
these modeling efforts, the accuracy of aging time predictions 
remains limited. 

2.2. Insulation Capacitance for Lifetime Optimization 

  Insulation capacitance is an important indicator for 
assessing the condition of insulation. A study conducted on 
motorettes [14], subjected to thermal stresses at different 
temperatures, showed that this capacitance can be used to track 
the evolution of insulation over time. Measurements are taken at 
each cycle  and used to establish an empirical equation that links 
time to the behavior of insulation capacitance. This allows for 
predicting the evolution of insulation over the course of thermal 
cycles. 

Additionally, research at the LSEE laboratory has shown that 
Cp [9] [15] is a promising indicator for assessing insulation 
aging. This indicator is now integrated into machine monitoring 
systems, as illustrated in Fig. 1, to monitor the purely thermal 
aging of a standard wire, where a progressive increase in ΔC is 
observed over time. Concurrently, it was observed that PDIV 
decreases as the organic layers age. 

 

Fig. 1: Variation of Capacitance and PDIV as a Function of Aging Duration for 
1-Day Cycles at 280°C [9]. 

3. PROPOSED EXPERIMENTAL METHODOLOGY  

Before proceeding with the studied samples, our 
experimental approach focused on taking measurements of two 
indicators, PDIV and Cp. The procedure will be described in the 
upcoming subsection. 

3.1. Studied samples 

Standardized twisted specimens were prepared using wire 
with a diameter of 1.25 mm, rated for a thermal class of 210°C, 
and coated with a double layer of insulation: polyamide-imide 

(PAI) and polyesterimide (PEI). Each specimen was 200 mm 
long, consisting of six turns, and subjected to a tension force of 
7 N. These specimens were prepared in accordance with IEC 270 
[16'] using a standardized TURNS device from RIGON. 

3.2. Measured Characteristics 

Measurements of Cp were performed using the Agilent 
4980A Precision LCR Meter at a frequency of 10 kHz. 
According to the measurement methods defined by IEC 62631-
1 [66], the measurement frequency was selected based on the 
instrument's accuracy specification in the datasheet (10 kHz – 
0.005% precision). 

PDIV measurements were carried out inside a Faraday cage 
in accordance with IEC 60270 [18]. For each specimen, 11 tests 
were performed to calculate the mean PDIV value. All 
measurements were conducted at ambient temperature. The 
measurement setup, shown in the electrical diagram in (Fig. 2), 
includes a 1nF coupling capacitor for partial discharge and 
voltage measurement, with signals amplified by a preamplifier 
(RPAI). All components were placed inside a Faraday cage to 
eliminate electromagnetic interference. The ICM Compact 
displays partial discharge pulses on a sinusoidal voltage signal, 
identifying the PDIV when repetitive pulses begin to appear.  

    

Fig. 2: The electrical diagram of the Faraday cage. 

3.3. Thermal and Electrical Aging Procedures 

The samples were subjected to controlled electrical aging 
conditions using the electrical aging setup shown in (Fig. 3 ). 
This setup includes a function generator (GBF) connected to two 
amplifiers that amplify the signal to deliver the required voltage 
levels. A Raspberry Pi is used to collect and store data from the 
system. The setup also features a test box containing two 
samples, along with an interface designed to monitor and record 
their lifespan under the applied electrical stresses. 

Two electrical stress levels were applied: 850 V (1.3 × 
PDIV) with 24-hour cycling, and 1000 V (1.5 × PDIV) with 16-
hour cycling. In both cases, a sinusoidal voltage at a frequency 
of 1 kHz was used. 

 
Fig. 3: Electrical aging setup. 



 

         In addition to the electrical aging tests, a thermal aging 
process was carried out using a high-temperature oven at 290 °C, 
applying a 5-hour cycle to five test specimens. This initial 
single-temperature test was conducted solely to observe the 
evolution of the indicators over time and to compare their 
behavior with that observed under electrical aging. 

4. RESULTS AND DISCUSSIONS  

4.1.   Analysis of Indicators 

The electrical analysis of Cp and PDIV indicators, along 
with temperature measurements taken by thermocouple starting 
from 144 hours (Fig. 4) reveals that under a relatively stable 
temperature and an applied voltage of 850 V (approximately 1.3 
times the initial PDIV), Cp tends to increase following the trend 
line. This increase may be explained by the fact that partial 
discharges can locally modify the insulating layers, creating 
regions of high permittivity. Additionally, the thickness of the 
insulation tends to decrease with electrical aging, which could 
also contribute to the increase in capacitance. 

Regarding the PDIV, it exhibits a relatively stable trend 
throughout the aging process, as shown by the trend line. This 
indicates that few partial discharges were initiated during the 
test, suggesting that the effect of electrical aging alone is not 
very pronounced in this case. As a result, the PDIV remains 
nearly constant over time, which makes it difficult to use directly 
as a reliable degradation indicator. 

Therefore, further research is needed to better understand how 
the material properties evolve under electrical stress, how 
environmental conditions may influence this evolution, and 
whether the effect is purely electrical or enhanced by higher 
voltage levels. As observed in (Fig. 5), increasing the applied 
voltage results in higher PDIV values, indicating that this 
approach could offer more potential for studying electrical aging 
phenomena. 

 

 

Fig. 4: Experimental Results of Indicators at 850 V Electrical Aging: (a) 

Specimen 1, (b) Specimen 2. 

 

Fig. 5:  Experimental Results of Indicators at 1000 V Electrical Aging: 

Specimen 3. 

Previous studies [9,15] have demonstrated that PDIV tends 
to decrease during thermal aging due to the progressive 
degradation of insulation. This behavior is also confirmed by our 
experimental results (Fig. 6), which show a clear decline in 
PDIV over time. The decrease is mainly caused by the thinning 
of the insulation and the emergence of defects both on the 
surface and within the material. These imperfections create 
localized areas of high electric field, which promote dielectric 
breakdown [6]. 

 

Meanwhile, Cp typically increases during the initial stages 
of aging. This is followed by what is known as the avalanche 



 

effect: as partial discharges occur, capacitors initially store 
charge but begin to release it as the energy builds up, leading to 
a gradual decrease in Cp over time [19]. 

 

 

Fig. 6: Experimental Results of Indicators under Thermal Aging at 290°C: (a) 

Specimen 1, (b) Specimen 2. 

5. AI MODEL RESULTS FOR LIFETIME PREDICTION OF 

INSULATION BASED ON PDIV MEASUREMENTS 

In this article, four models are used to predict the lifetime of 
the specimens based on a single aging indicator, namely the 
PDIV. Among these models, one is based on an Artificial 
Neural Network (ANN) using a multilayer perceptron (MLP) 
similar to the approach described in [20]. 

      This MLP model is designed to learn the relationship 
between thermal aging time and the remaining lifetime of 
electrical insulation systems. It consists of six hidden layers, 

each containing 512 neurons, and uses the ReLU activation 
function to introduce non-linearity. Optimization is performed 
using the Adam algorithm, which applies backpropagation to 
minimize prediction error.  

To evaluate the model, the Leave-One-Out Cross-Validation 
(LOOCV) method is applied, particularly well-suited for small 
datasets (here, only five data samples). In each iteration, four 
specimens are used for training and one for testing, rotating the 
test specimen each time. 

The model follows the typical MLP x architecture equations: 

 

                      zj = ∑ Wjixi

n

i=1

+ bj                                (1) 

                          aj  = f (zj)                                           (2) 

                        ŷ = fout ∑ Wjkaj

m

j=1

+ bK                      (3) 

 𝑥𝑖: Input features for training (in our case, aging 
time 𝑡𝑖). 

  Wji:  Weights learned by the MLPRegressor during 

training on x_train and y_train. 

 bj: Bias associated with hidden neuron j.  

 zj Pre-activation output calculated using equation 

(1). 

 aj:  Activated output of hidden neuron after 

applying the activation function, (equation (2)); 
corresponding here to the PDIV value. 

  Wjk:  Weights connecting hidden neuron j to the 

output layer. 

 bK:  Bias of the output layer. 

 fout:  Activation function used at the output layer. 

  y: ̂ Final predicted value of the model. 

In addition to the ANN, three other models were applied to 
predict the evolution of PDIV over time, in order to estimate the 
aging of the insulation system under thermal stress. 
First, polynomial regression was used, which fits a non-linear 
polynomial relationship between time and the PDIV indicator. 
This allows capturing more complex trends beyond simple 
linear regression. Additionally, two machine learning models 
were employed: 

• Support Vector Regression (SVR), which is an 
adaptation of Support Vector Machines for regression 
problems. SVR works by finding a function that deviates from 
the actual observed values by no more than a specified margin 
(ε), while ensuring the function is as flat as possible. 

• K-Nearest Neighbors (KNN), which predicts the value 
at a given time by averaging the outputs of the k most similar 
(nearest) data points in the training set. 

Both SVR and KNN were inspired by methods previously 
used for battery lifetime prediction [21][22] and have been 
widely applied to various regression tasks. In this work, they 
were adapted to predict the degradation of insulation systems. 

Once the PDIV predictions over time are obtained, the 
remaining lifetime is estimated by defining a critical threshold 
450, which was determined through a hipot test applying 1000 
V to the specimen. This test showed that the specimen cannot 



 

withstand this voltage, and all specimens failed at a PDIV value 
of approximately 450 V. The series of predicted values is 
examined to identify the first moment when the predicted curve 
drops below this threshold. The time corresponding to this 
crossing point is then considered the estimated remaining 
lifetime of the system. This method allows for evaluating, based 
solely on predictions, when the system will reach a critical 
operating limit, even without relying on other parameters such 
as temperature. 

    This corresponds to the following equation (4): 

    𝑡end = 𝑚𝑖𝑛{𝑡|𝑃𝐷𝐼𝑉predicted(𝑡) ≤ 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑} (4) 

 𝑡end : estimated remaining lifetime (the time when 
the limit is reached). 

 𝑃𝐷𝐼𝑉predicted(𝑡) : predicted PDIV value at time t. 

 critical threshold: the set threshold value (450). 

 Two chosen specimens were selected for prediction across 
the different models compared to the true (measured) values 
(Fig. 7, Fig. 8). We observe that the ANN predictions are highly 
similar to the real measured curves. Metrics were calculated to 
study the error between the predicted and measured values. 

 

Fig. 7: Predicted Results at 290°C Thermal Aging: Specimen 1. 

 

Fig. 8: Predicted Results at 290°C Thermal Aging: Specimen 2. 

      For evaluating model performance in this regression 

problem, we chose R² and MRE as the key metrics. These 

metrics are well-suited for regression tasks and are particularly 

effective for assessing the performance of models such as ANN, 

SVR, Polynomial Regression, and KNN in predicting complex 

systems such as the degradation of electrical insulation. 

𝑹𝟐 (Coefficient of Determination): 

       It measures the proportion of the variance in the actual data 

that is explained by the regression model. An 𝑅2 value close to 

1 indicates a very good model fit, while close to 0 it indicates a 

poor fit as shown in (5).  

     R2 = 1 −
∑ (ytrue,i − ypred,i)

2n
i=1

(ytrue,i − y̅true)
2                         (5) 

MRE (Mean Relative Error): 

     MRE is a metric used to assess the average of the relative 

errors between the predicted and actual values over a dataset. 

The relative error gives us an understanding of the prediction 

error in proportion to the true value, and MRE aggregates this 

over all data points to provide a summary measure of model 

accuracy y. 

      MRE% =
1

n   
∑

|ytrue,i − ypred,i|

|ytrue,i|

𝐧

𝐢=𝟏

∗ 100            (6) 

 y𝐭𝐫𝐮𝐞,𝐢: The actual value of the i-th observation. 

 y𝐩𝐫𝐞𝐝,𝐢: The predicted value for the i-th observation. 

 𝐲̅𝐭𝐫𝐮𝐞: The mean of the true values. 

 n: The number of data points.   

       The performance metrics presented in Table 1, along with 

the boxplot in Fig. 9, illustrate the distribution of relative errors 

(%) for four regression models: Support Vector Regression 

(SVR), Polynomial Regression, Artificial Neural Network 

(ANN), and K-Nearest Neighbors (KNN). Among these, the 

ANN model demonstrates the lowest median relative error 

(~0.8%) and the least variability, indicating strong stability and 

consistency in its predictions. In contrast, SVR and Polynomial 
models exhibit slightly higher median errors, while the KNN 

model shows a broader error distribution with several outliers, 

reflecting greater sensitivity to local data variations. This visual 

analysis is further supported by the values of  R2, which 

evaluate the overall predictive accuracy of each model. ANN 

achieves the best performance with an R2of 0.983, followed by 

SVR (0.974), Polynomial Regression (0.969) and KNN (0.955). 

These results clearly indicate that ANN outperforms the other 

models.  

Description  SVR Polynomial 

Regression  

KNN ANN 

      R2 0,974 0.969 0.955 0.983 

   MRE % 1.56 1.70 2.11 1.20 

Table1: Predicted Metrics for Thermal Aging at 290°C calculated overall 

Specimens. 



 

 

Fig. 9: Boxplot of Prediction Errors for SVR, Polynomial, ANN, and KNN. 

6. CONCLUSIONS AND PERSPECTIVES  

Different specimens were tested separately under thermal 
and electrical aging to evaluate how indicators such as Cp and 
PDIV evolve over time. The results show that these indicators 
are not significantly affected under electrical aging, making 
them difficult to exploit and interpret. This could be due to 
specific physical behaviors of the insulation material, which 
should be investigated in future work. 

In contrast, thermal aging showed more evident effects, with 
variations in the indicators consistent with findings from the 
literature. These results confirm that thermal aging can be 
tracked to assess the insulation condition of the machine over 
time. Based on this, we were able to predict the remaining useful 
life using a single indicator, achieving a high determination 
coefficient (R²= 0.983) with ANN model at this initial stage of 
the study. 

However, in real operating conditions, the machine is 
subjected to both thermal and electrical aging. It is therefore 
essential to identify the most relevant indicator under combined 
stress. In this context, we plan to focus on reflectometry, which 
we aim to develop and apply to partial discharge aging. This 
technique could help detect localized degradation and provide 
more accurate insights into the aging process.  

Additionally, future work should involve testing the models 
at different temperatures to better replicate real-world operating 
conditions. It should also explore the interaction between 
thermal and electrical stresses — particularly how thermal aging 
may accelerate electrical degradation — in order to predict 
lifetime under multiple stress factors and generalize the 
approach to actual winding systems. 
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