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ABSTRACT - The lifetime of electrical machines is closely
related to the degradation of stator winding insulation. Non-
destructive diagnostic techniques, such as capacitance
measurements and partial discharge (PD) analysis, are widely used
to monitor this degradation. This study proposes a methodology to
predict the remaining lifetime of electrical insulation systems
based on measured indicators. Using artificial intelligence (Al)
tools, four predictive models were developed to estimate insulation
lifetime from the evolution of the Partial Discharge Inception
Voltage (PDIV) over time. The best performance was achieved
using an Artificial Neural Network (ANN), with an R? value of
0.983. Additionally, this work enables the separate investigation of
electrical and thermal aging processes. It also explores how the two
indicators PDIV and parallel capacitance (Cp) provide an insight
into different aging mechanisms.
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1. INTRODUCTION

Rotating electrical machines are particularly susceptible to
insulation degradation, a gradual aging process that can span
several years. This phenomenon, which affects the lifespan of
equipment, represents a significant challenge for engineers and
industrial maintenance managers. Two important studies
highlight the extent of this phenomenon. The first, conducted by
General Electric, analyzed 5000 three-phase squirrel-cage
motors from various industrial sectors. It revealed that 37% of
failures involved stators, 11% of which were specifically related
to insulation systems [1]. The second study, conducted by
CIGRE, shows that 56% of hydrogenerator failures are due to
defects in insulation systems [2]. Finally, a complementary
study on 1199 devices identifies three main causes of insulation
system failure: insulation aging (responsible for 31% of
problems), the occurrence of partial discharges (22%), and
contamination or pollution (25%) [3].

The aging of insulation systems begins with the deterioration
of the coil insulation, which then spreads to the insulation
between phases or between phase and ground, leading to a
progressive decrease in coil resistance [4]. This process is
particularly concerning because it can lead to unforeseen
mechanical and electrical failures. As insulating materials age,
they become more sensitive to the various stresses they are
subjected to. These factors are referred to as TEAM stresses
(Thermal, Electrical, Ambient, and Mechanical). Thermal stress
is due to the operating temperature, caused by Joule losses, eddy

current losses, and hysteresis losses, and it is considered the
dominant factor in long-term aging. Electrical stress has been
addressed in several studies, especially in medium-voltage
machines, where partial discharges occur as a result of the high
voltage gradients (dv/dt) imposed by the inverter supply, and is
further influenced by the the use of new power semiconductors
devices based on SiC or GaN technology. Ambient stress refers
to environmental factors such as humidity and radiation effects.
Mechanical stress is caused by the movement of the coils and
the magnetic forces generated by the current flow. All these
stresses directly influence the lifespan of the stator and rotor
winding insulation systems [5], progressively degrading the
insulation integrity until its dielectric strength is compromised,
eventually leading to insulation failure, which can be either
permanent or temporary [6-8].

In this context, it is essential to better understand the underlying
mechanisms of insulation aging and predict their behavior over
time to extend the lifespan of machines and avoid costly failures.
This work aims to use artificial intelligence to model these
phenomena and predict the remaining life of insulations. The
adopted approach relies on the collection of electrical data, such
as parallel resistance (Rp), parallel capacitance (Cp), partial
discharge inception voltage (PDIV), and dissipation factor (D)
as aging indicators, as demonstrated in previous studies [9-11].
These measured data are then used to train selected artificial
intelligence algorithms to estimate the condition of insulation
systems. By leveraging experimental data from an aging
indicator that reflects the state of the coil insulation, the
predictive model estimates the remaining life of the insulation
while accounting for the various factors influencing its
degradation influencing its degradation.

The remainder of this paper is organized as follows. Section 2
reviews the literature on empirical and Al-based models for
assessing the aging of electrical insulation systems. Section 3
describes the experimental setup, including the twisted pair
specimens and the accelerated aging procedure. Section 4
presents the aging indicators measured during the experiments
and their evolution over time. Section 5 details the development
of aging prediction models using both linear regression and Al
techniques. Finally, Section 6 summarizes the main findings and
outlines directions for future research.

2. LITERATURE REVIEW



Studies have been conducted using in each case a single
indicator to optimize time, and comparing the results with other
conventional methods. [12-14].

2.1.  Insulation Resistance for Lifetime Optimization

Insulation resistance is one of the most commonly used
parameters to assess the condition of insulation systems in
electric motors. It typically decreases with increasing
temperature, electrical stresses, and charge/discharge cycles.
Studies [12][13] have shown that by monitoring insulation
resistance, it is possible to predict the long-term lifespan under
thermal aging at different temperatures. Several curve fitting
models and Bayesian Regularization Backpropagation BRP
neural network neural network have been employed. BRP relies
on a feedforward architecture and adjusts weights and biases
through iterative forward and backward passes to minimize
prediction errors, while Bayesian regularization helps prevent
overfitting and improves generalization. The results obtained
from these models were used to generate Arrhenius plots,
linking temperature to insulation lifespan. However, despite
these modeling efforts, the accuracy of aging time predictions
remains limited.

2.2.  Insulation Capacitance for Lifetime Optimization

Insulation capacitance is an important indicator for
assessing the condition of insulation. A study conducted on
motorettes [14], subjected to thermal stresses at different
temperatures, showed that this capacitance can be used to track
the evolution of insulation over time. Measurements are taken at
each cycle and used to establish an empirical equation that links
time to the behavior of insulation capacitance. This allows for
predicting the evolution of insulation over the course of thermal
cycles.

Additionally, research at the LSEE laboratory has shown that
Cp [9] [15] is a promising indicator for assessing insulation
aging. This indicator is now integrated into machine monitoring
systems, as illustrated in Fig. 1, to monitor the purely thermal
aging of a standard wire, where a progressive increase in AC is
observed over time. Concurrently, it was observed that PDIV
decreases as the organic layers age.
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Fig. 1: Variation of Capacitance and PDIV as a Function of Aging Duration for
1-Day Cycles at 280°C [9].

3. PROPOSED EXPERIMENTAL METHODOLOGY

Before proceeding with the studied samples, our
experimental approach focused on taking measurements of two
indicators, PDIV and Cp. The procedure will be described in the
upcoming subsection.

3.1.  Studied samples

Standardized twisted specimens were prepared using wire
with a diameter of 1.25 mm, rated for a thermal class of 210°C,
and coated with a double layer of insulation: polyamide-imide

(PAI) and polyesterimide (PEI). Each specimen was 200 mm
long, consisting of six turns, and subjected to a tension force of
7 N. These specimens were prepared in accordance with IEC 270
[16 using a standardized TURNS device from RIGON.

3.2. Measured Characteristics

Measurements of Cp were performed using the Agilent
4980A Precision LCR Meter at a frequency of 10 kHz.
According to the measurement methods defined by IEC 62631-
1 [66], the measurement frequency was selected based on the
instrument's accuracy specification in the datasheet (10 kHz —
0.005% precision).

PDIV measurements were carried out inside a Faraday cage
in accordance with IEC 60270 [18]. For each specimen, 11 tests
were performed to calculate the mean PDIV value. All
measurements were conducted at ambient temperature. The
measurement setup, shown in the electrical diagram in (Fig. 2),
includes a 1nF coupling capacitor for partial discharge and
voltage measurement, with signals amplified by a preamplifier
(RPAI). All components were placed inside a Faraday cage to
eliminate electromagnetic interference. The ICM Compact
displays partial discharge pulses on a sinusoidal voltage signal,
identifying the PDIV when repetitive pulses begin to appear.
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Fig. 2: The electrical diagram of the Faraday cage.

3.3.  Thermal and Electrical Aging Procedures

The samples were subjected to controlled electrical aging
conditions using the electrical aging setup shown in (Fig. 3).
This setup includes a function generator (GBF) connected to two
amplifiers that amplify the signal to deliver the required voltage
levels. A Raspberry Pi is used to collect and store data from the
system. The setup also features a test box containing two
samples, along with an interface designed to monitor and record
their lifespan under the applied electrical stresses.

Two electrical stress levels were applied: 850V (1.3 x
PDIV) with 24-hour cycling, and 1000 V (1.5 x PDIV) with 16-
hour cycling. In both cases, a sinusoidal voltage at a frequency
of 1 kHz was used.
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Fig. 3: Electrical aging setup.



In addition to the electrical aging tests, a thermal aging
process was carried out using a high-temperature oven at 290 °C,
applying a 5-hour cycle to five test specimens. This initial
single-temperature test was conducted solely to observe the
evolution of the indicators over time and to compare their
behavior with that observed under electrical aging.

4, RESULTS AND DISCUSSIONS

4.1. Analysis of Indicators

The electrical analysis of Cp and PDIV indicators, along
with temperature measurements taken by thermocouple starting
from 144 hours (Fig. 4) reveals that under a relatively stable
temperature and an applied voltage of 850 V (approximately 1.3
times the initial PDIV), Cp tends to increase following the trend
line. This increase may be explained by the fact that partial
discharges can locally modify the insulating layers, creating
regions of high permittivity. Additionally, the thickness of the
insulation tends to decrease with electrical aging, which could
also contribute to the increase in capacitance.

Regarding the PDIV, it exhibits a relatively stable trend
throughout the aging process, as shown by the trend line. This
indicates that few partial discharges were initiated during the
test, suggesting that the effect of electrical aging alone is not
very pronounced in this case. As a result, the PDIV remains
nearly constant over time, which makes it difficult to use directly
as a reliable degradation indicator.

Therefore, further research is needed to better understand how
the material properties evolve under electrical stress, how
environmental conditions may influence this evolution, and
whether the effect is purely electrical or enhanced by higher
voltage levels. As observed in (Fig. 5), increasing the applied
voltage results in higher PDIV values, indicating that this
approach could offer more potential for studying electrical aging
phenomena.
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Fig. 4: Experimental Results of Indicators at 850 V Electrical Aging: (a)
Specimen 1, (b) Specimen 2.
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Fig. 5: Experimental Results of Indicators at 1000 V Electrical Aging:

Specimen 3.

Previous studies [9,15] have demonstrated that PDIV tends
to decrease during thermal aging due to the progressive
degradation of insulation. This behavior isalso confirmed by our
experimental results (Fig. 6), which show a clear decline in
PDIV over time. The decrease is mainly caused by the thinning
of the insulation and the emergence of defects both on the
surface and within the material. These imperfections create
localized areas of high electric field, which promote dielectric
breakdown [6].

Meanwhile, Cp typically increases during the initial stages
of aging. This is followed by what is known as the avalanche



effect: as partial discharges occur, capacitors initially store
charge but begin to release it as the energy builds up, leading to
a gradual decrease in Cp over time [19].
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Fig. 6: Experimental Results of Indicators under Thermal Aging at 290°C: (a)
Specimen 1, (b) Specimen 2.

5. Al MODEL RESULTS FOR LIFETIME PREDICTION OF

INSULATION BASED ON PDIV MEASUREMENTS

In this article, four models are used to predict the lifetime of
the specimens based on a single aging indicator, namely the
PDIV. Among these models, one is based on an Artificial
Neural Network (ANN) using a multilayer perceptron (MLP)
similar to the approach described in [20].

This MLP model is designed to learn the relationship
between thermal aging time and the remaining lifetime of
electrical insulation systems. It consists of six hidden layers,

each containing 512 neurons, and uses the ReLU activation
function to introduce non-linearity. Optimization is performed
using the Adam algorithm, which applies backpropagation to
minimize prediction error.

To evaluate the model, the Leave-One-Out Cross-Validation
(LOOCV) method is applied, particularly well-suited for small
datasets (here, only five data samples). In each iteration, four
specimens are used for training and one for testing, rotating the
test specimen each time.

The model follows the typical MLP x architecture equations:

Zj = ZV\/jiXi + b] (1)
i=1
9 = four ) Wica; + by 3)

j=1

e x;: Input features for training (in our case, aging
timet;).

e Wj: Weights learned by the MLPRegressor during
training on x_train and y_train.

e b Bias associated with hidden neuron j.

ez Pre-activation output calculated using equation
Q).

e a; Activated output of hidden neuron after
applying the activation function, (equation (2));
corresponding here to the PDIV value.

e W Weights connecting hidden neuron j to the
output layer.
byk: Bias of the output layer.
foue: Activation function used at the output layer.

e ¥ Final predicted value of the model.

In addition to the ANN, three other models were applied to
predict the evolution of PDIV over time, in order to estimate the
aging of the insulation system under thermal stress.
First, polynomial regression was used, which fits a non-linear
polynomial relationship between time and the PDIV indicator.
This allows capturing more complex trends beyond simple
linear regression. Additionally, two machine learning models
were employed:

. Support Vector Regression (SVR), which is an
adaptation of Support Vector Machines for regression
problems. SVR works by finding a function that deviates from
the actual observed values by no more than a specified margin
(g), while ensuring the function is as flat as possible.

. K-Nearest Neighbors (KNN), which predicts the value
at a given time by averaging the outputs of the k most similar
(nearest) data points in the training set.

Both SVR and KNN were inspired by methods previously
used for battery lifetime prediction [21][22] and have been
widely applied to various regression tasks. In this work, they
were adapted to predict the degradation of insulation systems.

Once the PDIV predictions over time are obtained, the
remaining lifetime is estimated by defining a critical threshold
450, which was determined through a hipot test applying 1000
V to the specimen. This test showed that the specimen cannot



withstand this voltage, and all specimens failed at a PDIV value
of approximately 450 V. The series of predicted values is
examined to identify the first moment when the predicted curve
drops below this threshold. The time corresponding to this
crossing point is then considered the estimated remaining
lifetime of the system. This method allows for evaluating, based
solely on predictions, when the system will reach a critical
operating limit, even without relying on other parameters such
as temperature.

This corresponds to the following equation (4):
tena = MIn{t|PDIVpregictea (€) < critical threshold} (4)

® t.nq : estimated remaining lifetime (the time when
the limit is reached).

®  PDIVjregictea (t) - predicted PDIV value at time t.

e critical threshold: the set threshold value (450).

Two chosen specimens were selected for prediction across
the different models compared to the true (measured) values
(Fig. 7, Fig. 8). We observe that the ANN predictions are highly
similar to the real measured curves. Metrics were calculated to
study the error between the predicted and measured values.
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Fig. 7: Predicted Results at 290°C Thermal Aging: Specimen 1.
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Fig. 8: Predicted Results at 290°C Thermal Aging: Specimen 2.

For evaluating model performance in this regression
problem, we chose Rz and MRE as the key metrics. These
metrics are well-suited for regression tasks and are particularly
effective for assessing the performance of models such as ANN,

SVR, Polynomial Regression, and KNN in predicting complex
systems such as the degradation of electrical insulation.

R? (Coefficient of Determination):

It measures the proportion of the variance in the actual data

that is explained by the regression model. An R? value close to
1 indicates a very good model fit, while close to 0 it indicates a
poor fit as shown in (5).

Z?zl(Ytrue,i - yl)red,i)z

R2=1- >
(Ytrue,i - }_’true)

()

MRE (Mean Relative Error):

MRE is a metric used to assess the average of the relative
errors between the predicted and actual values over a dataset.
The relative error gives us an understanding of the prediction
error in proportion to the true value, and MRE aggregates this
over all data points to provide a summary measure of model
accuracyy.

n
1 e .
MRE% = - E |Ytrue,1 Ypred,1| +100 (6)
i=1

|Ytrue,i |

®*  Viuei- Theactual value of the i-th observation.

®  Ypreai- 1he predicted value for the i-th observation.
®  Viue: The mean of the true values.

e n: The number of data points.

The performance metrics presented in Table 1, along with
the boxplot in Fig. 9, illustrate the distribution of relative errors
(%) for four regression models: Support Vector Regression
(SVR), Polynomial Regression, Artificial Neural Network
(ANN), and K-Nearest Neighbors (KNN). Among these, the
ANN model demonstrates the lowest median relative error
(~0.8%) and the least variability, indicating strong stability and
consistency in its predictions. In contrast, SVR and Polynomial
models exhibit slightly higher median errors, while the KNN
model shows a broader error distribution with several outliers,
reflecting greater sensitivity to local data variations. This visual
analysis is further supported by the values of RZ?, which
evaluate the overall predictive accuracy of each model. ANN
achieves the best performance with an R%of 0.983, followed by
SVR (0.974), Polynomial Regression (0.969) and KNN (0.955).
These results clearly indicate that ANN outperforms the other
models.

Description SVR | Polynomial KNN | ANN
Regression
R? 0,974 | 0.969 0.955 | 0.983
MRE % 1.56 1.70 2.11 1.20

Tablel: Predicted Metrics for Thermal Aging at 290°C calculated overall
Specimens.
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Fig. 9: Boxplot of Prediction Errors for SVR, Polynomial, ANN, and KNN.

6. CONCLUSIONS AND PERSPECTIVES

Different specimens were tested separately under thermal
and electrical aging to evaluate how indicators such as Cp and
PDIV evolve over time. The results show that these indicators
are not significantly affected under electrical aging, making
them difficult to exploit and interpret. This could be due to
specific physical behaviors of the insulation material, which
should be investigated in future work.

In contrast, thermal aging showed more evident effects, with
variations in the indicators consistent with findings from the
literature. These results confirm that thermal aging can be
tracked to assess the insulation condition of the machine over
time. Based on this, we were able to predict the remaining useful
life using a single indicator, achieving a high determination
coefficient (R2= 0.983) with ANN model at this initial stage of
the study.

However, in real operating conditions, the machine is
subjected to both thermal and electrical aging. It is therefore
essential to identify the most relevant indicator under combined
stress. In this context, we plan to focus on reflectometry, which
we aim to develop and apply to partial discharge aging. This
technique could help detect localized degradation and provide
more accurate insights into the aging process.

Additionally, future work should involve testing the models
at different temperatures to better replicate real-world operating
conditions. It should also explore the interaction between
thermal and electrical stresses — particularly how thermal aging
may accelerate electrical degradation — in order to predict
lifetime under multiple stress factors and generalize the
approach to actual winding systems.
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